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A grid-generated turbulence is subjected to a pure plane strain and the principal axes 
of the Reynolds stress tensor become those of the strain. This ‘oriented’ homogeneous 
turbulence is then sabmitted to a new strain the principal axes of which have a differ- 
ent orientation. We show that in such a situation it is possible to observe a transfer of 
energy from the fluctuating motion to the mean one. Such transfer is necessarily 
associated with a forced decay of the anisotropy of the motion. A detailed analysis 
of the reorientation of the principal axes of the Reynolds stress tensor in the frame of 
those of the second strain gives an explanation of the evolution of the principal axes 
of the Reynolds stress tensor in a shear flow. 

1. Introduction 
If we consider that the description of a turbulent flow can be made by splitting all 

instantaneous quantities into an averaged and a fluctuating part, it  is clear that 
understanding of the physical process begins in particular with a detailed analysis of 
the action of the fluctuating motion on itself and the action of the mean motion on the 
turbulent field. Since all these different interactions occur simultaneously in a real 
flow, it is logical to try to separate them and, for this purpose, to build a hierarchy of 
physical models in which the turbulent motion is simpler than in real turbulent flows. 
The hierarchy begins with isotropic turbulence in which only the fundamental non- 
linear mechanism of transfer between wave vectors is retained. This is one of the aspects 
of the action of the fluctuating motion on itself. Another feature of this nonlinear self 
interaction can be found in the second step in the hierarchy which is the model of 
homogeneous but non-isotropic turbulence with no mean velocity gradient (Batchelor 
1960). In that case there appears a strong tendency to a return to isotropy which has 
been recently analysed in detail by Lumley & Newman (1977). Since no mean velocity 
gradient exists in the two previous models, the kinetic energy of the fluctuating motion 
is always decaying. 

The next step in the hierarchy is to consider the action of the mean motion on the 
fluctuating one. Most patterns of flow exhibit such a situation; one of the simplest is the 
model of homogeneous turbulence associated with a constant mean velocity gradient 
which has been extensively developed by Craya (1958). 

The simplest experiment concerning this model is the action of a constant pure 
plane strain on an initially isotropic turbulence (Townsend 1954; Tucker & Reynolds 
1968; Markcha1 1970). In  that case the principal axes of the Reynolds stress tensor are 
those of the mean rate of strain and the turbulent motion appears as ‘oriented’ in 
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FIQURE 1. Evolution (in degrees) of the angle of the principal axes of the Reynolds stress tensor 
in a shear flow as a function of the non-dimensional product (au,/a.X,) t .  -, Angle of the 
principal axes of the rate of strain tensor. *, from Rose (1966); 0, from Champagne, Harris & 
Corrsin (1970). 

these axes. It must be noticed that of course, in such a physical model, the action of the 
mean velocity gradient occurs simultaneously with the previous nonlinear mechanisms, 
but it is always possible to neglect the latter during a finite time interval if the mean 
gradient is large enough, as in the ' sudden distortion ' of Batchelor & Proudman ( 1 9 3 '  
A second fundamental flow of this kind, which has been experimentally studied, is the 
action of a constant shear on an initially isotropic turbulence (Rose 1966; Champagne, 
Harris & Corrsin 1970; Harris, Graham & Corrsin 1977). In  that case, the mean 
gradient is compounded of a pure plane strain associated with a mean rotation. Its 
action on the fluctuating motion is equivalent to one of a pure plane strain the principal 
axes of which are instantaneously turning around an axis perpendicular to the plane 
of the strain. The experiment shows (figure 1)  that in that case the principal axes of the 
Reynolds stress tensor are not aligned with those of the strain, which is undoubtedly 
a consequence of the mean rotation. In  particular, we can conclude that, in a shear 
flow, the associated plane strain is always acting on a fluctuating motion in which the 
principal axes of the Reynolds stress tensor are never aligned with those of the strain. 

Disregarding the problem of the mean rotation, we report in this paper on an experi- 
mental study of a pure plane strain acting on a turbulence in which the principal axes 
of the Reynolds stress tensor are not initially the same as those of the strain. This 
physical situation can be placed between the classical pure plane strain acting on an 
initially isotropic turbulence and the constant mean shear flow. 

2. Experimental procedure 
Two problems are to be solved. First we try to obtain a homogeneous turbulent 

field in which the direction of the principal axes of the Reynolds stress tensor is well 
determined. In  particular we know that, when a pure plane strain is applied to a quasi- 
isotropic grid turbulence, the principal axes of the Reynolds stress are aligned with 
those of the strain as shown in figure 2. 

Next we try to apply to the quasi-homogeneous turbulence coming from this first 
strain a second strain whose principal axes have been rotated an angle a in the plane of 
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Isotropic Reynolds Plane ‘Orientation’ of tlie 
stress tensor strain fluctuating motion 

FIGiURE 2. For a plane strain applied to a quasi-isotropic grid-turbulence, the principal axes of 
the Reynolds stress are aligned with those of the strain. 

‘Oriunted‘ New strain 
turbulence 

FIQURE 3. The application of a second strain whose principal axes have been rotated at angle a 
in the plane of the first strain. 

the first strain. We represent this phenomenon in figure 3. Of course, the Reynolds 
streas will be strongly influenced by the new strain and will forget its first orientation 
with a relaxation time which has to be determined by experiment. 

For the design of a distorting duct which realizes the two successive plane strains we 
will start from the following considerations. We know (Townsend 1954) that a velocity 
field whose gradient is given in Cartesian co-ordinates by the matrix 

0 0  

[: 0” -3 
has streamlines given by 

D 
x3 = X30exp (-q %) 3 x2 = z20exp (6 xl) - 

In all previous experiments concerning a pure plane strain the surface of the dis- 
torting duct is generated from an initial rectangular section. If, instead, this initial 
section is elliptic and given by the equation in the plane (z2, x3) 

the surface of the distorting duct which produces the gradient (1),  and which is a 
stream surface, will be given by the equation 

x; + x; 
a2exp [(2D/U1) xl] b2exp [ - (2D/U1) xl] = 

(4) 
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FIGURE 4. The distorting duct and the different frames in which the tensors will be projected. 

Then it is easy to see that the cross-section of the duct at  x1 is an ellipse the principal 
axes of which along x2 and x3 are respectively 

In  particular a t  the value 

the cross-section is a circle of radius 

Moreover, for a duct of length 
R = (ab)J.  

Ul b L = -1n- 
D a’ 

the last section is an ellipse which can be found from the initial one by a rotation of 90’ 
(figure 4). Taking into account the fact that such a duct has a circular cross-section at 
x1 = $L, we can cut the duct into two parts B and C as shown in figure 4 and turn the 
part C an angle a around the x1 axis. In  part A a quasi isotropic turbulence is generated 
from a grid possessing a square 3.5 cm mesh, which is located a t  40 mesh lengths 
behind the entrance of the distorting duct. In  part B, the fluctuating motion is 
‘oriented’ by the first strain as indicated in figure 2 and in part C the second strain acts 
on this initially ‘oriented’ turbulent motion as is shown in figure 3. 

The total length L of the distorting duct is 0.8 m and the principal axes of the elliptic 
initial section are respectively 0.3 m and 0.075 m. All measurements are made with 
standard DISA hot-wire probes and with constant temperature DISA anemometers 55 
M 0 1  associated with DISA units 35 D25. The measurements of the correlation u Z g  
when it exists in the plane of the strain were obtained by use of a method derived from 
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FIQURE 5. Evolution in the case a = 0 of the ratio k = ( u ~ - u ~ ) / u ~ + u ~ )  as EL function of the 
strain ratio eD’.  Comparison of results : - . - , Townsend (1954) ; ---, Tucker & Reynolds (1968) ; 
I_ , Marhchal ( 1  970) ; *, present results. 

the one proposed by Fugita Pr. Kovasznay (1968). The axial velocity is equal to 
18.6 m/s, so that the intensity of the strain is 32-23 s-1. The trace of the Reynolds stress 
tensor at the entrance of the duct is = 0.43 m2 s-~. 

3. Experimental results and comments 
We give in this part the evolution of the components of the Reynolds stress tensor for 

different values of a: 0,  Qm, in-, 3m, in. All the results are plotted versus X J L  and Dt, 
or eDt ,  which is the strain ratio. We know that in the case of a sudden distortion 
(Batchelor & Proudman 1954; see also Courseau 1974) the components of the 
Reynolds stress appear as functions of this exponential quantity. 

Of course, for a = 0, that is to say for the classical case of a pure plane strain, we 
should recover the results obtained by Townsend (1954), Tucker & Reynolds (1968) 
and Markchal(l970). We see in particular in figure 5 that the evolution of the ratio 

- - - -  
k = (u; - ui)/(u,” + u;) (8) 

considered as a function of the strain ratio, agrees well with the results of Tucker & 
Reynolds ( 1  968) and Markchal (1970) but a discrepancy with Townsend’s results must 
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FIGURE 6. Influence of the strain on an eddy aligned with the X ,  axis. 
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FIGURE 7. Evolution of the invariant II as a function of X J L  and Dt for different values of a 
(0, in, in, +n, &n). ---, numerical results obtained from a rapid distortion theory for a = 0 and 
in by Boschiero, Gence & Mathieu (1977).  

be noticed. As K is not a tensorial quantity we prefer to characterize the anisotropy of 
the flow by the non-dimensional tensor used by Lumley (1975), which is defined by 

which appears as a good scalar measure of the state of anisotropy of the turbulence, 
plays a similar role to K .  In  the case a = 0, a very simple explanation of the growth of K 
can be given. Indeed, we can say that all eddies which are aligned with the direction of 
extension x, will turn faster and faster and then induce a component 2 which will 
increase (figure 6).  Of course with the same reasoning it can be argued that 3 must 
decrease. The result is also a growth of the invariant n as is shown in figure 7. Another 
consequence is the growth of b, and the decay of b,, (figure 8) which has already been 
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FIGURE 8. Evolution of the components bzz and bs8. For a = 0 :  -k, bat; m, 

for a = &n: A, bas; 0, baa. 
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Isotropic Distortion 
turbulence, in part B 
part A 

part C 

FIGURE 9. The application of the plane strain of opposite signs. 

emphasized by Tucker & Reynolds (1968). In  particular for the pure plane strain 
applied to isotropic turbulence, we can write for all values oft  

bss- b22 > 0.  (11) 

Then, in the rate equation for the kinetic energy of the fluctuating motion 43 
(12) 

@ - = - Dq2(b22 - bm) - 2E, at 
where C is the usual dissipation term. The underlined term, which is the well-known 
coupling between the mean motion and the fluctuating one, is positive and the mean 
motion gives energy to the fluctuating one. 

This remark may appear as very trivial but will have some importance if we con- 
sider the case where a = +TI, that is to say, when two plane strains of opposite sign are 
successively applied as indicated in figure 9. In  this case, in part B of the distorting 
duct, the evolution of? is given by (12) where the coupling term 
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_ -  - + ~ 7 @ ~ ~  - b33) - 2 ~ .  aq2 
at (14) 

Hence the coupling term is negative during the whole time BALen b,, is greater than b,. 
Figure 8 shows that this is the case up to the end of the distorting duct. We can then 
conclude that the Reynolds stress, which has been subjected to a pure strain of charac- 
teristic time 1 / D  during a time T, needs the same time to forget the influence of this 
strain when it is subjected to a new strain with a same characteristic time but of 
opposite sign. This phenomenon of reversibility can be understood from Craya's 
equation (1958) if all the nonlinear effects and the viscosity are neglected. Indeed,under 
these hypotheses this equation, which gives the evolution of the spatial Fourier trans- 
form Oij(k, t )  of the double correlations at two points ui u; (r, t ) ,  reduces to 

- 

It is then clear that this equation is invariant if the sign of the time t and of the mean 
velocity gradient are simultaneously changed. This remark gives an explanation of the 
observed reversibility only if in the experiment the nonlinear effects can be neglected 
during the time when the different distortions are applied. This will be the case if the 
characteristic lifetime of the turbulent motion at  the entrance of the distorting duct, - 

which is of the order of 
71 = Jf/(6&, 

where M is the mesh length of the grid, is greater than the residence time 

where L is the length of the distorting duct. In  these experiments, the ratio r,/rl is of the 
order of 0.2. In  an earlier paper (Boschiero, Gence & Mathieu 1977) we have developed 
a numerical model founded on the simplified Craya equation in which the nonlinear 
terms have been neglected and comparison with the experimental results appears 
in figure 7. 

An immediate consequence of the relaxation phenomenon is that during the whole 
time of relaxation the fluctuating motion gives energy to the mean motion. This 
appears clearly on figure 10 where a strong decay of is found after the circular cross- 
section for a = QT. This is a rather pathological case, but other physical situations 
exist where this reverse transfer of energy appears, in particular in strongly non- 
symmetrical flows (Eskinazi 1964). It is also interesting to notice that in the case a = Qn 
the invariant II decreases after the change in sign of the strain (figure 7),  and then the 
turbulence presents a tendency to return to isotropy under the action of the mean 
gradient. The question arises whether in homogeneous turbulence a forced exchange of 
energy from the fluctuating motion to the mean one is necessarily associated with a 
forced decay of the invariant II. In  answer we will consider the rate equation for II, 
which can be derived easily from the one for the Reynolds stress tensor. If one assumes 
that 

2v U i , k U j , k  = #a&ij, (16) 
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the evolution equation for I1 is 

Of course, as usual in turbulence, this equation must be closed and in particular we 
can use, for the correlation term involving the pressure, the closure proposed by 

(18) 

Lumley (1975): - 
P q2 - 
- . ( u i , j + ~ j , i )  = ~ ( u i , j + ~ j , i ) + $ ~ ~ ( b ~ ~ ) .  P 

$ij is linear with respect to the components blnb. Since these components are small, 
we can neglect in (17) all terms nonlinear in bij and it becomes a very simple equation: 

an 
I” -.A- 
at 1 s m, j + q , i )  h,* 

This can be compared with the rate equation €or 3 which in the homogeneous case 

(20) _ -  ap-2 - -2.F.(oi,j+l?j,i).bij-2.s. 
exactly reduces to 

at 

It is now clear that, when the mean flow receives energy from the fluctuating motion, 

(21) 
the double contraction 

is positive and then n must decay. The inverse is also true. The experimental results 
agree well with those coming from the numerical model previously mentioned. Hence 
we can state that when a mean gradient is applied to a fluctuating motion its energy 
level and its anisotropy do not necessarily increase but on the contrary can decrease, 
the evolution of the phenomenon depending of course on the history of the fluctuating 
motion. 

Pi,, + Qi). bij 
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FIGURE 11. Evolution for different values of a (in, an, Qn) of the component br8, as a function of 
X , / L  and Dt. The origin of time is taken when the turbulence enters tho second strain. ---, 
numerical results of Boschiero, Gence & Mathieu (1977) .  m, Qn; $, an; *, in. 

This pathological exchange of energy from the fluctuating motion to the mean flow 
can be observed not only for a = in but also in fact for a > an. Indeed, the term 
describing the exchange of energy can be written, immediately after the change in 
position of the principal axes of the strain,] 

- D . F .  (bZ2 - b33) .  (2 cos2 a - 1). (22) 
Since at  this location the underlined quantity is positive, this relation will be negative 
for a > &r and hence the fluctuating motion will give energy to the mean one, as can be 
observed in figure 10. Of course we must also note a decay of the invariant Il for these 
values of a, as indicated in figure 7. 

Evidently, for the values of a between 0 and in, the principal axes of the Reynolds 
stress tensor will not remain aligned with those of the first strain and will rotate 
around the x1 axis under the influence of the second strain. In  particular, if we work in 
the principal axes of the new strain (1,2', 3') as indicated in figure 4, the Reynolds 
stress tensor is given by 

--- 
Of course, if ui, ui, uz are the components of the Reynolds stress tensor in the axes 

(1 ,2 ,3)  immediately before the change of strain, we have, just after, in the axes (1 ,  2', 3') 
- -  
u; - u; 

U2' us. = - sin 2a, 
2 (24) 

or, if the deviator bij  is considered, 

(25) 
b33 - b 2 2  sin za. br3, = - 

2 
The evolution of this off-diagonal component of the tensor b in the axes (1 ,  2', 3'), 
starting from the value given by the relation (25), appears in figure 11.  It is clear that 
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FIGURE 12. The orientation of the principal axes of the Reynolds stress tensor (----). 
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FIGURE 13. Evolution of the angle 91 (in degrees) as a function of X , / L  and Dt for different 
values of a (477, fn, Qn). The origin of time is taken when the turbulence enters the second strain. 
_ _ _  , numerical results of Boschiero, Gence & Mathieu (1977).  

the variation of this quantity is very weak. Of course the evolution of bZf3, is not an 
indication of the evolution of the ‘orientation’ of the fluctuating motion. More 
precisely, we should consider the orientation of the principal axes of the Reynolds 
stress tensor, which are the same as those of b, in the principal axes of the new strain. 
The various notations appear in figure 12. The variations of q~ are plotted in figure 13 
and it is clear t,hat, at the end of the distorting duct, 91 has decayed to half of its initial 
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value. If we define as the characteristic relaxation time, the time r when q~ is half of its 
initial value, we see that 

which agrees well with the numerical model of the simplified Craya equation. 

of the strain. 

7 M 0*7/D, (26) 

Hence, we can say that this relaxation time is of the order of the characteristic time 

4. Conclusion 
We have shown that  in homogeneous turbulence associated with a constant mean 

velocity gradient, an exchange of energy from the fluctuating motion to the mean one 
is necessarily linked to a forced decay of the anisotropy of the fluctuating motion. 

Moreover, when an ‘oriented’ turbulence is subjected to a plane strain, whose 
principal axes are different from those of the Reynolds stress tensor, the latter present 
a tendency to be reoriented in the axes of the strain. The characteristic time of the 
relaxation phenomenon is of the order of the time scale of the strain. This result can be 
used to explain the difference between the principal axes of the strain and those of the 
Reynolds stress tensor in a shear flow (figure 1). Indeed, the principal axes of the 
Reynolds stress tensor would be aligned with those of the associated strain if the 
relaxation time r was much smaller than the characteristic time of rotation of the 
principal axes of the strain. Now if the time scale of the shear is 1 s-l, the characteristic 
time of both the mean rotation and the associated strain is 2 s-l. We know from our 
previous analysis that the relaxation time scale of the principal axes of the Reynolds 
stress tensor is then of the order of 2 s-l, that is to say of the same order as the mean 
rotation time. Hence, in a shear, the principal axes of the Reynolds stress tensor cannot 
be aligned with those of the associated strain which make an angle of &I with the 
direction of the flow. It is then clear that the relation between the Reynolds stress 
tensor and the mean velocity gradient does not satisfy the principle of material 
indifference as has been argued by Lumley (1970) using other considerations. 

This work was carried out a t  the laboratory of fluid mechanics of Ecole Centrale de 
Lyon and has been supported by the Centre National de la Recherche Scientifique. 
We should like to thank J. P.  Schon and G. Charnay for the helpful discussions con- 
cerning the building of the wind tunnel and the measurements. We would also 
acknowledge Professor O’Brien for his helpful assistance. 
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